

Average or not? Just how unique is our Earth?

Bart Busschots - Whitaker Awards 2005

Bart Busschots BSc AMInstP FRAS

Introduction

- I am NOT a Biologist! (no higher than JC Science!)
- I am an Astronomer
- Interest in Biology stemed from the work of Frank Drake and others at the SETI Institute
- The ultimate question to me is "Are we alone?"
- Always believed (based mainly on pure optimism) that there must be loads of life like us in our galaxy.
- The Book "Rare Earth: Why Complex Life is Uncommon in the Universe" (P. Duglas Ward & D. Brownlee) forced me to relunctantly think again!

Unique in what way?

- In this talk I will be looking at Earth's most impressive feature, its support of higher life.
- Bacterial life is amazingly resilient and has been found in the most extreme environments.
- Higher life seems to be a lot less resistant to extremes.
- For the purpose of this talk I will consider higher life to be complex, intelligent life forms like Humans, Chimps and Dolphins.

The Swinging Pendulum

- Opinions on just how unique Earth is seem to keep swinging from side to side (as well as generating controversy!)
- First we believed Earth was unique (based on religion more than anything else)
- Then Scientific opinion began to swing the other way. (Drake Equation, explosion in discovery of Extra Solar Planets)
- Now Scientific opinion seems to be starting to swing back, Earth appears to be quite special after all!

What is needed for Higher Life?

- A temperate environment rich in the elements needed for organic molecules (mainly Carbon)
- Protection from Stellar and Cosmic radiation.
- An environment conducive to diversification
 - Many varied environments
 - Some catastrophes to kick start evolution

 Stability, evolution from simple organic compounds to higher life appears to be a long and slow process so these conditions must exist over a very long period (~4 Billion years on Earth)

Earth's Key Features -Location

- Located in the Galaxies 'Habitable Zone' (lots of heavy elements and a quite neighborhood)
- Located in the Sun's 'Habitable Zone'
- In orbit around a very special star
 - Rich in heavy elements
 - Big yet long lived (rare)

 Just the right amount of debris our early solar system to acquire needed water and carbon without destroying the planet (Jupiter responsible)

Earth's Key Features -Continued

- Has molten core and plate tectonics
 - Provides Magnetic Field which acts as a vital shield
 - Allows Earth to cycle Carbon
 - Allows Earth to re-distribute Oxygen and Water
 - Acts as Earth's thermostat
- Abnormally large moon
 - Stabilizes the Earth's axis of rotation, VITAL to keep climate stable
- Catastrophe's that are not too catastrophic
 - 'Snow Ball Earth'
 - Mass Extinctions caused by geophysical events

How Rare are these Features?

Galactic Habitable Zones:

- Majority of stars in each galaxy are outside the habitable zone (tightly packed in core)
- Many galaxies are so poor in heavy elements that they have no habitable zone at all
- Solar Habitable Zones
 - Narrow
 - If stars are too small no zone at all as planets in zone will be too small to hold atmospheres or will be tidally locked

How Rare are these Features?

Suitable Star:

- 90% of stars are smaller than the sun
- Most stars larger than the sun are short-lived
- Most stars are multiple stars so no stable orbits for planets

Molten core:

 need radioactive elements to keep molten – rare in the universe

Large Moon:

Very rare as creation process very unlikely

How Rare are these Features?

Catastrohes:

- Fine line between 'Snow Ball Earth' events and total planet wide extinction ending all life
- Fine line between impacts causing mas extinctions and impacts causing total extinction

Conclusion

- Earth is a lot more unique than many people once thought
- Not the center of the universe but a very special place all the same
- Bacterial life may well be ubiquitous but higher life is unlikely to be as common as Drake predicted (10,000 civilizations in our galaxy).

